Shifts in regional water availability due to global tree restoration

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Google Scholar 

  • Land Restoration for Achieving the Sustainable Development Goals (International Resource Panel, 2019).

  • Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).

    Google Scholar 

  • Seijger, C., Kleinschmit, D., Schmidt-Vogt, D., Mehmood-Ul-Hassan, M. & Martius, C. Water and sectoral policies in agriculture–forest frontiers: an expanded interdisciplinary research approach. Ambio 50, 2311–2321 (2021).

    Google Scholar 

  • Ellison, D. Forests and Water Background Analytical Study 2 (UN Forum on Forests, 2018).

  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).

    Google Scholar 

  • Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).

    Google Scholar 

  • Farley, K. A., Jobbágy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11, 1565–1576 (2005).

    Google Scholar 

  • Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

    Google Scholar 

  • Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).

    Google Scholar 

  • Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).

    Google Scholar 

  • Ning, T., Li, Z., Feng, Q., Chen, W. & Li, Z. Effects of forest cover change on catchment evapotranspiration variation in China. Hydrol. Process. 34, 2219–2228 (2020).

    Google Scholar 

  • Sun, G. et al. Potential water yield reduction due to forestation across China. J. Hydrol. 328, 548–558 (2006).

    Google Scholar 

  • Huxman, T. E. et al. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319 (2005).

    Google Scholar 

  • Ellison, D., Futter, M. N. & Bishop, K. On the forest cover–water yield debate: from demand- to supply-side thinking. Glob. Change Biol. 18, 806–820 (2012).

    Google Scholar 

  • Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Google Scholar 

  • Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    Google Scholar 

  • Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS ONE 11, e0151993 (2016).

    Google Scholar 

  • Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Google Scholar 

  • Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

    Google Scholar 

  • te Wierik, S. A., Cammeraat, E. L. H., Gupta, J. & Artzy-Randrup, Y. A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 57, e2020WR029234 (2021).

    Google Scholar 

  • Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).

    Google Scholar 

  • Zhang, L. et al. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 40, W02502 (2004).

    Google Scholar 

  • Oudin, L., Andréassian, V., Lerat, J. & Michel, C. Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. J. Hydrol. 357, 303–316 (2008).

    Google Scholar 

  • Zhou, S., Yu, B., Huang, Y. & Wang, G. The complementary relationship and generation of the Budyko functions. Geophys. Res. Lett. 42, 1781–1790 (2015).

    Google Scholar 

  • Teuling, A. J. et al. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 23, 3631–3652 (2019).

    Google Scholar 

  • Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. Global Evaporation to Precipitation Flows Obtained with Lagrangian Atmospheric Moisture Tracking (Pangaea, 2020); https://doi.org/10.1594/PANGAEA.912710

  • Tuinenburg, O. A. & Staal, A. Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrol. Earth Syst. Sci. 24, 2419–2435 (2020).

    Google Scholar 

  • In-Situ River Discharge Data (GRDC, accessed 19 April 2021); https://www.bafg.de/GRDC

  • Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

    Google Scholar 

  • Van Der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).

    Google Scholar 

  • Roebroek, C. T. J., Melsen, L. A., Hoek van Dijke, A. J., Fan, Y. & Teuling, A. J. Global distribution of hydrologic controls on forest growth. Hydrol. Earth Syst. Sci. 24, 4625–4639 (2020).

    Google Scholar 

  • Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Google Scholar 

  • Ellison, D., Wang-Erlandsson, L., Van Der Ent, R. J. & Noordwijk, M. V. Upwind forests: managing moisture recycling for nature-based resilience. Unasylva 70, 14–26 (2019).

    Google Scholar 

  • van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  • Lal, R. Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria. I. Soil physical and hydrological properties. Land Degrad. Dev. 7, 19–45 (1996).

    Google Scholar 

  • Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Google Scholar 

  • Bargués Tobella, A. et al. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 50, 3342–3354 (2014).

    Google Scholar 

  • Ilstedt, U. et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 6, 21930 (2016).

    Google Scholar 

  • Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Env. Resour. 43, 193–218 (2018).

    Google Scholar 

  • Ellison, D. & Ellis, E. Forest Cover, Windspeed, and Precipitation: A South American Case Study of the Impact of Forest Ecosystems on Wind and Rainfall Patterns EGU2020-22235 (EGU General Assembly 2020); https://doi.org/10.5194/egusphere-egu2020-22235

  • Xu, R. et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 13, 670 (2020).

    Google Scholar 

  • Makarieva, A. M. & Gorshkov, V. G. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci. 11, 1013–1033 (2007).

    Google Scholar 

  • Sheil, D. & Murdiyarso, D. How forests attract rain: an examination of a new hypothesis. BioScience 59, 341–347 (2009).

    Google Scholar 

  • Swann, A. L. S. et al. Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most. Environ. Res. Lett. 13, 055014 (2018).

    Google Scholar 

  • Yosef, G. et al. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. 8, 996 (2018).

    Google Scholar 

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  • Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).

    Google Scholar 

  • Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).

    Google Scholar 

  • Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Google Scholar 

  • Shaw, T. A. Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Clim. Change Rep. 5, 345–357 (2019).

    Google Scholar 

  • Jennifer, F. & Natasa, S. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Phil. Trans. R. Soc. A 373, 20140170 (2015).

    Google Scholar 

  • Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).

    Google Scholar 

  • Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Google Scholar 

  • Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2018).

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Google Scholar 

  • Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present. Copernicus https://doi.org/10.24381/cds.68d2bb30 (accessed 15 January 2020).

  • Budyko, M. I. Climate and Life (Academic Press, 1974).

  • Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).

    Google Scholar 

  • Leave a Comment